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Overlapping Community Detection Using
Neighborhood-Inflated Seed Expansion
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Abstract—Community detection is an important task in network analysis. A community (also referred to as a cluster) is a set of
cohesive vertices that have more connections inside the set than outside. In many social and information networks, these communities
naturally overlap. For instance, in a social network, each vertex in a graph corresponds to an individual who usually participates in
multiple communities. In this paper, we propose an efficient overlapping community detection algorithm using a seed expansion
approach. The key idea of our algorithm is to find good seeds, and then greedily expand these seeds based on a community metric.
Within this seed expansion method, we investigate the problem of how to determine good seed nodes in a graph. In particular, we
develop new seeding strategies for a personalized PageRank clustering scheme that optimizes the conductance community score. An
important step in our method is the neighborhood inflation step where seeds are modified to represent their entire vertex neighborhood.
Experimental results show that our seed expansion algorithm outperforms other state-of-the-art overlapping community detection
methods in terms of producing cohesive clusters and identifying ground-truth communities. We also show that our new seeding
strategies are better than existing strategies, and are thus effective in finding good overlapping communities in real-world networks.

Index Terms—Community detection, clustering, overlapping communities, seed expansion, seeds, personalized PageRank

1 INTRODUCTION

OMMUNITY detection is one of the most important and

fundamental tasks in network analysis with applica-
tions in functional prediction in biology [1] and sub-market
identification [2] among others. Given a network, a commu-
nity is defined to be a set of cohesive nodes that have more
connections inside the set than outside. Since a network can
be modelled as a graph with vertices and edges, community
detection can be thought of as a graph clustering problem
where each community corresponds to a cluster in the
graph. In this manuscript, the terms cluster and community
are used interchangeably.

The goal of traditional, exhaustive graph clustering algo-
rithms (e.g., Metis [3], Graclus [4]) is to partition a graph such
that every node belongs to exactly one cluster. However, in
many social and information networks, nodes participate in
multiple communities. For instance, in a social network,
nodes represent individuals and edges represent social inter-
actions between the individuals. In this setting, a node’s com-
munities can be interpreted as its social circles. Thus, it is
likely that a node belongs to multiple communities, i.e., com-
munities naturally overlap. To find these groups, we study
the problem of overlapping community detection where com-
munities are allowed to overlap with each other and some
nodes are allowed not to belong to any cluster.
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The main contribution of our paper is a new overlapping
community detection algorithm with performance that
greatly exceeds the state-of-the-art. This contribution was
accomplished by studying new ideas in the prototypical
“seed-and-grow” meta-algorithm for overlapping commu-
nities. We study each step of the overall computational
pipeline in detail on real-world networks to demonstrate
the utility of each component of the algorithm. Our experi-
mental results show that our overlapping community detec-
tion algorithm significantly outperforms other methods
in terms of run time, cohesiveness of communities, and
ground-truth accuracy.

These local seed expansion methods are among the most
successful strategies for overlapping community detection
[5]. However, principled methods to choose the seeds are
few and far between. When they exist, they are usually com-
putationally expensive (e.g., using maximal cliques as seeds
[6]). Empirically successful strategies include exhaustively
exploring all individual seeds and greedy methods that ran-
domly pick a vertex, grow a cluster, and continue with any
unassigned vertex.

To find a set of good seeds, we present two effective seed-
ing strategies that we call “Graclus centers” and “Spread
hubs.” The “Graclus centers” seeding is based on the same
distance kernel that underlies the equivalence between kernel
k-means and graph clustering objectives [4]. Using this dis-
tance function, we can efficiently locate a good seed within an
existing set of cohesive vertices of the graph. Specifically, we
first compute many clusters using a multi-level weighted ker-
nel k-means algorithm on the graph (the Graclus algorithm)
[4], then use the corresponding distance function to compute
the “centroid vertex” of each cluster. We use the neighbor-
hood set of each centroid vertex as a seed region for commu-
nity detection. The idea of “Spread hubs” seeding is to select
an independent set of high degree vertices. This seeding strat-
egy is inspired by recent observations that there should be
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good clusters around high degree vertices in real-world net-
works with a power-law degree distribution [7], [8].

The algorithm we use to grow a seed set is based on per-
sonalized PageRank (PPR) clustering [9]. The high level idea
of this expansion method is to first compute the PPR vector
for each of the seeds, and then expand each seed based on the
PPR score. It is important to note that we can have multiple
nodes in the personalization vector, and indeed we use the
entire vertex neighborhood of a seed node as the personaliza-
tion vector for PPR. This neighborhood inflation plays a critical
role in the success of our algorithm. The full algorithm to com-
pute overlapping clusters from the seeds is discussed in
Section 3. We name our algorithm Nise by abbreviating our
main idea, Neighborhood-Inflated Seed Expansion.

Our experimental results show that our seeding strategies
are better than existing seeding strategies, and effective in
finding good overlapping communities in real-world net-
works. More importantly, we observe that NisE significantly
outperforms other state-of-the-art overlapping community
detection methods in terms of producing cohesive clusters
and identifying ground-truth communities. Also, our
method scales to problems with over 45 million edges,
whereas other existing methods were unable to complete on
these large datasets.

2 PRELIMINARIES

We formally describe the overlapping community detection
problem, and review some important concepts in graph clus-
tering. Also, we introduce real-world networks which are
used in our experiments.

2.1 Problem Statement

Given a graph G = (V, £) with a vertex set V and an edge set
&, we can represent the graph as an adjacency matrix A such
that A;; = e;; where ¢;; is the edge weight between vertices i
and j, or A;; = 0 if there is no edge. We assume that graphs
are undirected, i.e., A is symmetric. The goal of the tradi-
tional, exhaustive graph clustering problem is to partition a
graph into k pairwise disjoint clusters Ci,...,C; such that
CiU...UC, = V. On the other hand, the goal of the overlap-
ping community detection problem is to find overlapping
clusters whose union is not necessarily equal to the entire
vertex set V. Formally, we seek k overlapping clusters such
thatC, U...UC; C V.

2.2 Measures of Cluster Quality
There are some popular measures for gauging the quality of
clusters: cut, normalized cut, and conductance. Let us define
links(C,,C,) to be the sum of edge weights between vertex
sets C, and C,.

Cut. The cut of cluster C; is defined as the sum of edge
weights between C; and its complement, V\C;:

cut(C;) = links(C;, V\C;). (1)
Normalized Cut. The normalized cut of a cluster is defined

by the cut with volume normalization as follows:

ncut(C;) = cut(C)

 1links(C;, V)’ @
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Conductance. The conductance of a cluster is defined to
be the cut divided by the least number of edges incident
on either set C; or V\C;:

cut(C;)
min(1inks(C;, V), 1inks(V\C;, V))

cond(C;) =

By definition, cond(C;) = cond(V\C;). The conductance of a
cluster is the probability of leaving that cluster by a one-hop
walk starting from the smaller set between C; and V\C;. Notice
that cond(C;) is always greater than or equal to ncut(C;).

2.3 Graph Clustering and Weighted Kernel k-means
The normalized cut objective of a graph G is defined:

Z"‘: 1links(C;, V\C)) 3
4 links(C;,V)

This objective is equivalent to a weighted kernel k-means
objective with the weight of each data point set to the degree
of a vertex, and the kernel matrix to be K =oD ! +
D 'AD™!, where D is the diagonal matrix of degrees (i.e.,
D;; = Z;L:l A;; where n is the total number of nodes), and o
is a scalar typically chosen to make K positive-definite [4].
Then, we can quantify the kernel distance between a vertex
v € C; and cluster C;, denoted dist(v,C;), as follows:

dist(v,C;) =
_ 2links(v,C;) | links(C;,Ci) o o 4)
deg(v)deg(Ci)  deg(C;)’  deg(v) deg(Cy)

where deg(v) = links(v, V), and deg(C;) = links(C;, V).

2.4 Datasets

We use ten different real-world networks including collabora-
tion networks, social networks, and a product network from
[10], [12], and [11]. The networks are presented in Table 1. All
the networks are loop-less, connected, undirected graphs.

In a collaboration network, vertices indicate authors, and
edges indicate co-authorship. If authors u and v wrote a
paper together, there exists an edge between them. For
example, if a paper is written by four authors, this is repre-
sented by a clique of size four in the network. HepPh,
AstroPh, and CondMat networks are constructed based on
the papers submitted to arXiv e-print service. The DBLP
network is constructed based on the DBLP computer sci-
ence bibliography website.

We use five social networks: Flickr, Myspace, LiveJournal,
LiveJournal2 (a variation with ground-truth), and Orkut.
Flickr is an online photo sharing application, Myspace is a
social entertainment networking service, LiveJournal is a
blogging application where users can publish their own jour-
nals, and Orkut was a social networking website operated by
Google.

In the Amazon product network, vertices represent prod-
ucts and edges represent co-purchasing information. If
products v and v are frequently co-purchased, there exists
an edge between them. This network is constructed based
on Customers Who Bought This Item Also Bought feature of the
Amazon website.
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TABLE 1
Summary of Real-World Networks
Category Graph No. of vertices  No. of edges Max. Deg. Avg.Deg. Avg.CC Ground-truth  Source
Collaboration HepPh 11,204 117,619 491 21.0 0.6216 N/A [10]
AstroPh 17,903 196,972 504 22.0 0.6328 N/A [10]
CondMat 21,363 91,286 279 8.5 0.6417 N/A [10]
DBLP 317,080 1,049,866 343 6.6 0.6324 v [10]
Product Amazon 334,863 925,872 549 55 0.3967 v [10]
Social Orkut 731,332 21,992,171 6,933 60.1 0.2468 v [10]
Flickr 1,994,422 21,445,057 27,908 21.5 0.1881 N/A [11]
Myspace 2,086,141 45,459,079 92,821 43.6 0.1242 N/A [12]
LiveJournal 1,757,326 42,183,338 29,771 48.0 0.2400 N/A [12]
LiveJournal2 1,143,395 16,880,773 11,495 29.5 0.2535 v [10]

In Table 1, we present the number of nodes/edges, the
maximum degree, the average degree, and the average clus-
tering coefficient (CC) of each of the networks. Fig. 1 shows
the degree distributions of DBLP, Flicker and Amazon net-
works. We can see that the real-world networks have distin-
guishing characteristics: a power-law degree distribution
[13] and a high clustering coefficient [14], [15].

As indicated in Table 1, we have ground-truth communi-
ties [10] on some of the datasets. In DBLP, each publication
venue (i.e., journal or conference) can be considered as an
individual ground-truth community. In the Amazon net-
work, each ground-truth community can be defined to be a
product category that Amazon provides. In LiveJournal2 and
Orkut networks, there exists user-defined social groups. On
LiveJournal2 and Orkut networks, the ground-truth commu-
nities do not cover a substantial portion of the graph, so we
use a subgraph which is induced by the nodes that have at
least one membership in the ground-truth communities. In
Table 1, the statistics about LiveJournal2 and Orkut are based
on the induced subgraphs we used in our experiments.

3 OVERLAPPING COMMUNITY DETECTION USING
NEIGHBORHOOD-INFLATED SEED EXPANSION

We introduce our overlapping community detection algo-
rithm, Nise which consists of four phases: filtering, seeding,
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Fig. 1. Degree distributions of real-world networks — the degree distribu-
tions follow a power-law.

seed expansion, and propagation. In the filtering phase, we
remove regions of the graph that are trivially separable from
the rest of the graph. In the seeding phase, we find good seeds
in the filtered graph, and in the seed expansion phase, we
expand the seeds using a personalized PageRank clustering
scheme. Finally, in the propagation phase, we further expand
the communities to the regions that were removed in the fil-
tering phase. Fig. 2 shows the overview of the NisE algorithm.

3.1 Filtering Phase

The goal of the filtering phase is to identify regions of the
graph where an algorithmic solution is required to identify
the overlapping clusters. To explain our filtering step, recall
that almost all graph partitioning methods begin by assign-
ing each connected component to a separate partition. Any
other choice of partitioning for disconnected components is
entirely arbitrary. The Metis procedure [3], for instance, may
combine two disconnected components into a single parti-
tion in order to satisfy a balance constraint on the partition-
ing. For the problem of overlapping clustering, an analogous
concept can be derived from biconnected components. We
now review a series of definitions and formalizations of these
ideas in order to analyze our filtering phase and prove new
theorems about our propagation phase in Section 3.4. A
biconnected component is defined as follows:

Definition 1. Given a graph G = (V, £), a biconnected component
is a maximal induced subgraph G' = (V', ') that remains con-
nected after removing any vertex and its adjacent edges in G'.

Let us define the size of a biconnected component to be
the number of edges in G'. Now, consider all the bicon-
nected components of size one. Notice that there should be
no overlapping partitions that use these edges because they
bridge disjoint communities. Consequently, our filtering
procedure is to find the largest connected component of the
graph after we remove all single-edge biconnected compo-
nents. We call this the “biconnected core” of the graph even
though it may not be biconnected. Let £5 denote all the sin-
gle-edge biconnected components. Then, the biconnected
core graph is defined as follows:

Definition 2. The biconnected core Go = (V¢,E¢) is the maxi-
mum size connected subgraph of G" = (V, €\ Es).

Subgraphs connected to the biconnected core are called
whiskers by Leskovec et al. [16] and we use the concept of a
bridge to define them:
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Fig. 2. Overview of NISE. NISE consists of four main phases: Filtering, seeding, seed expansion, and propagation.

Definition 3. A bridge is a biconnected component of size one
which is directly connected to the biconnected core.

Whiskers are then defined as follows:

Definition 4. A whisker W = (Vw, Ew) is a maximal subgraph
of G that can be detached from the biconnected core by remov-
ing a bridge.

Let £ be all the bridges in a graph. Notice that £ C .
On the region which is not included in the biconnected core
graph G, we define the detached graph Gp as follows:

Definition 5. Gp = (Vp,Ep) is the subgraph of G which is
induced by V \ V.

Finally, given the original graph G = (V,£), V and € can
be decomposed as follows:

Proposition 1. Given a graph G = (V,€), V =VcUVp and
E=EcUEpUER.

Proof. This follows from the definitions of the biconnected
core, bridges, and the detached graph. a

Fig. 3 illustrates the biconnected core, whiskers, and
bridges. The output of our filtering phase is the biconnected
core graph where whiskers are filtered out (we remove
regions that are clearly partitionable from the remainder).
Note that there is no overlap between any of the whiskers.
This indicates that there is no need to apply the overlapping
community detection algorithm on the detached regions.

Table 2 shows the size of the biconnected core and the
connectivity of the detached graph in our real-world net-
works. Details of these networks are presented in Table 1.
We compute the size of the biconnected core in terms of
the number of vertices and edges. The number reported in
the parenthesis shows how many vertices or edges are

// h\l
/! BICONNECTED A
& CORE }/’ b
\

e 4
& —-’\\ /;‘ -

Fig. 3. Biconnected core, whiskers, and bridges — gray region indicates
the biconnected core where vertices are densely connected to each
other, and green components indicate whiskers. Red edges indicate
bridges which connect the biconnected core and the whiskers.

included in the biconnected core, i.e., the percentages of
Vel/|V| and |Ec|/|€|, respectively. We also compute the
number of connected components in the detached graph,
and the size of the largest connected component (LCC in
Table 2) in terms of the number of vertices. The number
reported in the parenthesis indicates the relative size of the
largest connected component compared to the number of
vertices in the original graph.

We can see that the biconnected core contains a substan-
tial portion of the edges. In terms of the vertices, the bicon-
nected core contains around 80 or 90 percent of the vertices
for all datasets except Flickr. In Flickr, the biconnected core
only contains around 50 percent of the vertices while it con-
tains 95 percent of edges. This indicates that the biconnected
core is dense while the detached graph is quite sparse. Recall
that the biconnected core is one connected component. On
the other hand, in the detached graph, there are many con-
nected components, which implies that the vertices in the
detached graph are likely to be disconnected with each other.
Notice that each connected component in the detached graph
corresponds to a whisker. So, the largest connected compo-
nent can be interpreted as the largest whisker. Based on the
statistics of the detached graph, we can see that whiskers
tend to be separable from each other, and there are no signifi-
cant size whiskers. Also, the gap between the sizes of the
biconnected core and the largest whisker is significant. All
these statistics and observations support that our filtering
phase creates a reasonable and more tractable input for an
overlapping community detection algorithm.

3.2 Seeding Phase

Once we obtain the biconnected core graph, we find seeds
in this filtered graph. The goal of an effective seeding strat-
egy is to identify a diversity of vertices, each of which lies
within a cluster of good conductance. This identification
should not be too computationally expensive.

Graclus Centers. One way to achieve these goals is to first
apply a high quality and fast graph partitioning scheme
(disjoint clustering of vertices in a graph) in order to com-
pute a collection of sets with fairly small conductance.
Then, we select a set of seeds by picking the most central
vertex from each set (cluster). The idea here is roughly that
we want something that is close to the partitioning — which
ought to be good — but that allows overlap to produce better
boundaries between the partitions.

See Algorithm 1 for the full procedure. In practice, we
perform top-down hierarchical clustering using Graclus [4]
to get a large number of clusters. Then, we take the center of
each cluster as a seed — the center of a cluster is defined to
be the vertex that is closest to the cluster centroid (as dis-
cussed in Section 2.3, we can quantify the distance between
a vertex and a cluster centroid by using the kernel that
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TABLE 2
Biconnected Core and the Detached Graph (in the Last Column, LCC Refers to the Largest Connected Component)
Biconnected core Detached graph
No. of vertices (%) No. of edges (%) No. of components Size of the LCC (%)
HepPh 9,945 (88.8%) 116,099 (98.7%) 1,123 21 (0.1874%)
AstroPh 16,829 (94.0%) 195,835 (99.4%) 957 23 (0.1285%)
CondMat 19,378 (90.7%) 89,128 (97.6%) 1,669 12 (0.0562%)
DBLP 264,341 (83.4%) 991,125 (94.4%) 43,093 32(0.0101%)
Amazon 291,449 (87.0%) 862,836 (93.2%) 25,835 250 (0.0747 %)
Flickr 954,672 (47.9%) 20,390,649 (95.1%) 864,628 107 (0.0054%)
Myspace 1,724,184 (82.7%) 45,096,696 (99.2%) 332,596 32 (0.0015%)
LiveJournal 1,650,851 (93.9%) 42,071,541 (99.7%) 101,038 105 (0.0060%)
LiveJournal2 1,076,499 (94.2%) 16,786,580 (99.4%) 59,877 91 (0.0080%)
Orkut 729,634 (99.8%) 21,990,221 (99.9%) 1,529 15 (0.0021%)

underlies the relationship between kernel k-means and
graph clustering); see steps 5 and 7 in Algorithm 1. If there
are several vertices whose distances are tied for the center
of a cluster, we include all of them.

Algorithm 1. Seeding by Graclus Centers

Input: graph G, the number of seeds k.
Output: the seed set S.

1: Compute exhaustive and non-overlapping clusters C; (i =

1,...,k)onG.

2: Initialize S = ().

3: for each cluster C; do

4:  foreach vertex v € C; do

5 Compute dist(v,C;) using (4).

6: end for

7: S ={argmindist(v,C;)} US.

8: end for "

Spread Hubs. From another viewpoint, the goal is to select
a set of well-distributed seeds in the graph, such that they
will have high coverage after we expand the sets. We greed-
ily choose an independent set of k£ points in the graph by
looking at vertices in order of decreasing degree. For this
heuristic, we draw inspiration from the distance function (4),
which shows that the distance between a vertex and a clus-
ter is inversely proportional to vertex’s degree. Thus, high
degree vertices are expected to have small distances to
many other vertices. This also explains why we call the
method spread hubs. It also follows from the recent results in
[7], [8] which show that there should be good clusters
around high degree vertices in power-law graphs with high
clustering coefficients. We use an independent set in order
to avoid picking seeds nearby each other.

Our full procedure is described in Algorithm 2. In the
beginning, all the vertices are unmarked. Until k seeds are
chosen, the following procedure is repeated: among
unmarked vertices, the highest degree vertex is selected as a
seed, and then the selected vertex and its neighbors are
marked. As the algorithm proceeds exploring hubs in the
network, if there are several vertices whose degrees are
the same, we take an independent set of those that are
unmarked. This step may result in more than % seeds, how-
ever, the final number of returned seeds typically does not
exceed the input k£ too much because there usually are not
too many high degree vertices.

Algorithm 2. Seeding by Spread Hubs

Input: graph G = (V, ), the number of seeds k.
Output: the seed set S.
1: Initialize S = 0.
2: All vertices in V are unmarked.
3: while |S| < kdo
Let 7 be the set of unmarked vertices with max degree.
foreacht € 7 do
if ¢ is unmarked then
S={t}us.
Mark ¢ and its neighbors.
9: end if
10:  end for
11: end while

3.3 Seed Expansion Phase
Once we have a set of seed vertices, we wish to expand the
clusters around those seeds. An effective technique for this
task is using a personalized PageRank vector [17], also
known as a random-walk with restart [18]. A personalized
PageRank vector is the stationary distribution of a random
walk that, with probability « follows a step of a random
walk and with probability (1 —«) jumps back to a seed
node. If there are multiple seed nodes, then the choice is
usually uniformly random. Thus, nodes close by the seed
are more likely to be visited. Recently, such techniques
have been shown to produce communities that best match
communities found in real-world networks [19]. In fact,
personalized PageRank vectors have close relationships to
graph cuts and clustering methods. Andersen et al. [9]
show that a particular algorithm to compute a personal-
ized PageRank vector, followed by a sweep over all cuts
induced by the vector, will identify a set of good conduc-
tance within the graph. They prove this via a “localized
Cheeger inequality” that states, informally, that the set
identified via this procedure has a conductance that is
not too far away from the best conductance of any set con-
taining that vertex. Also, Mahoney et al. [20] show that
personalized PageRank is, effectively, a seed-biased eigen-
vector of the Laplacian. They also show a limit to relate
the personalized PageRank vectors to the Fiedler vector of
a graph.

We briefly summarize the PPR-based seed expansion
procedure in Algorithm 3 (each seed is expanded by this
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Algorithm 3. Seed Expansion by PPR

Algorithm 4. Propagation Procedure

Input: graph G = (V,€&), a seed node s € S, PageRank link-

following probability parameter 0 < « < 1, accuracy € > 0

Output: low conductance set C

: Set 7 = {s} U {neighbors of s}

: Initialize z, =0 forv € V

: Initialize r, = 0forv e V\ 7, r,=1/|T|forve T

: while any r, > deg(v)e do

Update z, = z, + (1 — a)r,.

For each (v,u) € &,

update r, = r, + ar,/(2 deg(v))

Update r, = ar,/2

: end while

: Sort vertices by decreasing z,,/deg(v)

: For each prefix set of vertices in the sorted list, compute the
conductance of that set and set C to be the set that achieves
the minimum.

S © ® N

procedure). Please see Andersen et al. [9] for a full descrip-
tion of the algorithm. The high level idea of this expansion
method is that given a set of restart nodes (denoted by 7 in
Algorithm 3), we first compute the PPR vector, examine
nodes in order of highest to lowest PPR score, and then
return the set that achieves the minimum conductance.

It is important to note that we can have multiple nodes in
T (which corresponds to nonzero elements in the personali-
zation vector in PPR), and indeed we use the entire vertex
neighborhood of a seed node as the restart nodes (see step 1
in Algorithm 3). Since we do not just use a singleton seed
but also use its neighbors as the restart nodes in PPR, we
call step 1 neighborhood inflation. We empirically observe
that this neighborhood inflation plays a critical role in pro-
ducing low conductance communities. See Section 5 for
details. Recently, Gleich and Seshadhri [8] have provided
some theoretical justification for why neighborhood-inflated
seeds may outperform a singleton seed in PPR expansion on
many real-world networks.

Steps 2-8 are closely related to a coordinate descent opti-
mization procedure [21] on the PageRank linear system.
Although it may not be apparent from the procedure, this
algorithm is remarkably efficient when combined with
appropriate data structures. The algorithm keeps two vec-
tors of values for each vertex, x and r. In a large graph,
most of these values will remain zero on the vertices and
hence, these need not be stored. Our implementation uses a
hash table for the vectors x and r. Consequently, the sorting
step is only over a small fraction of the total vertices.

In the original PPR clustering [9], the PPR score is divided
by the degree of each node (step 9) to remove bias towards
high degree nodes. This step converts a PageRank vector, a
left eigenvector of a Markov chain, into the right eigenvector
of a Markov chain. Right eigenvectors are close relatives of
the Fiedler vector of a graph, and so this degree normaliza-
tion produces a vector that we call the Fiedler Personalized
PageRank vector because of this relationship. Fiedler vectors
also satisfy Cheeger inequalities, just like the Fiedler Person-
alized PageRank vectors. However, Kloumann and Klein-
berg [22] recently reported that this degree normalization
might slightly degrade the quality of the output clusters in
terms of matching with ground-truth communities in some
real-world networks. So, in our experiments, we also try

Input: graph G = (V, ), biconnected core Go = V¢, Ec), com-
munities of G¢ : C; (i = 1,...,k) € C.
Output: communities of G.
foreach C; € C do
Detect bridges £, attached to C;.
foreach b; € £p, do
Detect the whisker w; = (V;, £;) which is attached to b;.
Ci=CU V]'.
end for
end for

using the PPR score which we just call PPR. We compare the
performance of the Fiedler PPR and PPR in Section 5.

In Algorithm 3, there are two parameters which are related
to PPR computation: « and €. We follow standard practice for
PPR clustering on an undirected graph and set o = 0.99 [16].
This value yields results that are similar to those without
damping, yet have bounded computational time. The param-
eter ¢ is an accuracy parameter. As ¢ — 0, the final vector solu-
tion x tends to the exact solution of the PageRank linear
system. When used for clustering, however, this parameter
controls the effective size of the final cluster. If ¢ is large (about
10~2), then the output vector is inaccurate, incredibly sparse,
and the resulting cluster is small. If € is small, say 1078, then
the PageRank vector is accurate, nearly dense, and the result-
ing cluster may be large. We thus run the PPR clustering
scheme several times, with a range of accuracy parameters
that are empirically designed to produce clusters with
between 1 and 50,000 times the number of edges in the initial
seed set (these values of ¢ are fixed and independent of the
graph). The final community we select is the one with the best
conductance score from these possibilities.

3.4 Propagation Phase

Once we get the personalized PageRank communities on the
biconnected core, we further expand each of the communities
to the regions detached in the filtering phase. Our assignment
procedure is straightforward: for each detached whisker con-
nected via a bridge, we add that piece to all of the clusters
that utilize the other vertex in the bridge. This procedure is
described in Algorithm 4. We show that our propagation pro-
cedure only improves the quality of the final clustering result
in terms of the normalized cut metric. To do this, we need to
fix some notation. Let £p, be a set of bridges which are
attached to C;, and W, be a set of whiskers which are attached
to the bridges, i.e., W¢, = (Vw,, Ew; ), where

w; = (Vj,gj) S Wci;VWi = U Vj; and ng‘ = U 51

w;eWe, wieW,

Finally, let C; denote the expanded C;, where |C;| > |Ci|.
Equality holds in this expression when there is no bridge
attached to C;. When we expand C; using Algorithm 4, C, is
equal to {C; U Vw,}. The following results show that we
only decrease the (normalized) cut by adding the whiskers.

Theorem 1. If a community C; is expanded to C. using Algo-
rithm 4, cut(C;) = cut(C;) — links(Vyy;,C;).
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TABLE 3
Average Normalized Cut Values Before & After Propagation
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TABLE 4
Time Complexity of Each Phase

Graph Before Propagation After Propagation  Phase Time complexity

HepPh 0.1383 0.1282 Filtering oV +1€])

ézggﬁ;t 8%;6;11 81;%? Seeding Graclus centers O([logk](|Vc| + |€c]))

DBLP 0.2329 0.2035 Spread hubs - O([Vcl)

Amazon 0.1356 0.1159 Seed expansion O(XF max.1inks(C;(¢), Vo))
Propagation O(X¥(Ep, + Vw, + Ew))

Theorem 2 shows this should decrease.
Proof. Recall that cut(C;) is defined as follows:
cut(C;) = 1inks(C;, V\ ;).
= links(C;, V) — links(C;,C;).
Let us first consider links(C,, V) as follows:

links(C},V) = links(C;,V) + links(Vy;,, V)
— links(VWi,Ci).

Notice that linkS(VWi,V) = linkS(VW” VW,;) + links
(Vw,,C;) by definition of whiskers. Thus, 1inks(C}, V) can
be expressed as follows:

links(C},V) = links(C;, V) 4+ links(Vy,, Vi;).  (5)

On the other hand, 1inks(C},C;) can be expressed as:

1

links(C},C;) = links(Vyy,, Vw;,) + links(C;,C;)

l + links(Vw;,, C;). ©

Now, let us compute cut(C.) which is defined by
cut(C) = links(C;,V) — 1inks(C},C}). (7)
By rewriting (5) and (6), we can express cut(C.) as fol-
lows: cut(C}) = cut(C;) — Links(Vy,, C;). 0

Theorem 2. If a community C; is expanded to C; using Algorithm 4,
ncut(C;) < ncut(C;).

Proof. Recall that

B cut(Ci)
ncut(C;) = links(C;, V)’

On the other hand, by Theorem 1, we can represent
ncut(C;) as follows:

cut(Cl)
ncut (Ci) = mécl]}) .
o Cut(C,-) - linkS(VWi,Ci)
~ 1links(C;, V) + links(Vw,, Vi)

Therefore, ncut(C)) < ncut(C;). Equality holds when
there is no bridge attached to C;, i.e., £p, = 0. a

Table 3 shows the average normalized cut values before
and after the propagation phase. As predicted by the theo-
rem, these values decrease after the propagation on this set
of graphs.

3.5 Time Complexity Analysis

We summarize the time complexity of our overall algorithm
in Table 4. The filtering phase requires computing bicon-
nected components in a graph, which takes O(|V| + |£|) time.
The complexity of “Graclus centers” seeding strategy is
determined by the complexity of hierarchical clustering using
Graclus. Recall that “Spread hubs” seeding strategy requires
nodes to be sorted according to their degrees. Thus, the com-
plexity of this strategy is bounded by the sorting operation
(we can use a bucket sort). Expanding each seed requires
solving multiple personalized PageRank clustering prob-
lems. The complexity of this operation is complicated to state
compactly [9], but it scales with the output size of each clus-
ter, 1inks(C;, V). We do evaluate the seed expansion multi-
ple times for the various values of ¢. So the total runtime of
this step involves a summation of all the cluster sizes for each
e. Practically, this is only a small amount larger than the larg-
est cluster output by any step, so that max.1inks(C;(¢), V) is
a realistic estimate. Finally, our simple propagation proce-
dure scans the regions that were not included in the bicon-
nected core and attaches them to the final communities.

4 RELATED WORK

For overlapping community detection, many different app-
roaches have been proposed [5] including clique percolation,
line graph partitioning, eigenvector methods, ego network
analysis, and low-rank models. Clique percolation methods
look for overlap between fixed size cliques in the graph [23].
Line graph partitioning is also known as link communities.
Given a graph G = (V, ), the line graph of L(G) (also called
the dual graph) has a vertex for each edge in G and an edge
whenever two edges (in () share a vertex. For instance, the
line graph of a star is a clique. A partitioning of the line graph
induces an overlapping clustering in the original graph [24].
Even though these clique percolation and line graph parti-
tioning methods are known to be useful for finding meaning-
ful overlapping structures, these methods often fail to scale to
large networks like those we consider.

Eigenvector methods generalize spectral methods and use
a soft clustering scheme applied to eigenvectors of the nor-
malized Laplacian or modularity matrix in order to estimate
communities [25]. Ego network analysis methods use the the-
ory of structural holes [26], and compute and combine many
communities through manipulating ego networks [27], [28].
We compare against the Demon method [28] that uses this
strategy. We also note that other low-rank methods such
as non-negative matrix factorizations identify overlapping
communities as well. We compare against the Bigclam
method [29] that uses this approach.
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TABLE 5
Returned Number of Clusters and Graph Coverage of Each Algorithm

Graph oslom demon bigclam nise-sph-fppr nise-gre-fppr
HepPh coverage (%) 100 88.83 84.37 100 100
no. of clusters 608 5,147 100 99 920
AstroPh coverage (%) 100 94.15 91.11 100 100
no. of clusters 1,241 8,259 200 212 246
CondMat coverage (%) 100 91.16 99.96 100 100
no. of clusters 1,534 10,474 200 201 249
Flickr coverage (%) N/A N/A 52.13 93.60 100
no. of clusters N/A N/A 15,000 15,349 16,347
LiveJournal coverage (%) N/A N/A 43.86 99.78 99.79
no. of clusters N/A N/A 15,000 15,058 16,271
Myspace coverage (%) N/A N/A N/A 99.87 100
no. of clusters N/A N/A N/A 15,324 16,366
DBLP coverage (%) 100 84.89 100 100 100
no. of clusters 17,519 174,560 25,000 26,503 18,477
Amazon coverage (%) 100 79.16 100 100 100
no. of clusters 17,082 105,685 25,000 27,763 20,036
Orkut coverage (%) N/A N/A 82.13 99.99 100
no. of clusters N/A N/A 25,000 25,204 32,622
LiveJournal2 coverage (%) N/A N/A 56.64 99.95 99.99
no. of clusters N/A N/A 25,000 25,065 32,274

The approach we employ is called local optimization and
expansion [5]. Starting from a seed, such a method greedily
expands a community around that seed until it reaches a
local optima of the community detection objective. Deter-
mining how to seed a local expansion method is, arguably,
a critical problem within these methods. Strategies to do so
include using maximal cliques [6], prior information [30], or
locally minimal neighborhoods [8]. The latter method was
shown to identify the vast majority of good conductance
sets in a graph; however, there was no provision made for
total coverage of all vertices.

Different optimization objectives and expansion methods
can be used in a local expansion method. For example, Oslom
[31] tests the statistical significance of clusters with respect to
a random configuration during community expansion. Start-
ing from a randomly picked node, the Oslom method greedily
expands the cluster by checking whether the expanded com-
munity is statistically significant or not, which results in
detecting a set of overlapping clusters and outliers in a graph.
We compare our method with the Oslom method in our
experiments (see Section 5).

In our algorithm, we use a personalized PageRank based
cut finder [9] for the local expansion method. Abrahao et al.
[19] observe that the structure of real-world communities
can be well captured by the random-walk-based algorithms,
i.e., personalized PageRank clusters are topologically simi-
lar to real-world clusters. More recently, Kloumann and
Kleinberg [22] propose to use pure PageRank scores instead
of the Fiedler PageRank scores to get a higher accuracy in
terms of matching with ground-truth communities.

A preliminary version of this work has appeared in [32].
In this paper, we provide technical details about neighbor-
hood inflation in our seed expansion phase, and include
additional experimental results to show the importance of
the neighborhood inflation step. Also, we test and compare
the performance of the Fiedler PageRank and the standard
PPR in our expansion phase. We also improve the imple-
mentation of our algorithm in that we try expanding seeds
in parallel using multiple threads.

5 EXPERIMENTAL RESULTS

We compare our algorithm, Nisg, with other state-of-the-art
overlapping community detection methods: Bigclam [29],
Demon [28], and Oslom [31]. For these three methods, we
used the software which is provided by the authors of [28],
[29], and [31] respectively. While Demon and Oslom only
support a sequential execution, Bigclam supports a multi-
threaded execution. Nis is written in a mixture of C++ and
MATLAB. In Nisg, seeds can be expanded in parallel, and
this feature is implemented using the parallel computing
toolbox provided by MATLAB. We compare the perfor-
mance of each of these methods on ten different real-world
networks which are presented in Section 2.4. Within NisE,
we also compare the performance of different seeding strat-
egies and some variants of expansion methods. We use four
different seeding strategies: “graclus centers” (denoted by
“nise-grc-*”) and “spread hubs” (denoted by “nise-sph-*")
which are proposed in this manuscript, “locally minimal
neighborhoods” (denoted by “nise-lem-*”) which has been
proposed in [8], and random seeding strategy (denoted by
“nise-rnd-*") where we randomly take k seeds. Andersen
and Lang [2] have provided some theoretical justification
for why random seeding also should be competitive. We
also compare two different expansion methods: the Fiedler
Personalized PageRank (denoted by “nise-*-fppr”), and the
standard Personalized PageRank (denoted by “nise-*-ppr”).

5.1 Graph Coverage and Community Sizes

We first report the returned number of clusters and the graph
coverage of each algorithm in Table 5. The graph coverage
indicates how many vertices are assigned to clusters (i.e., the
number of assigned vertices divided by the total number of
vertices in a graph). Note that we can control the number of
seeds k in NisE and the number of clusters k in Bigclam. We
set k (in our methods and Bigclam) as 100 for HepPh, 200 for
AstroPh and CondMat, 15,000 for Flickr, Myspace, and Live-
Journal, and 25,000 for DBLP, Amazon, LiveJournal2, and
Orkut networks without any tuning and using the guidance
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Fig. 4. Distributions of cluster sizes from the methods. These plots show a kernel density smoothed histogram of the cluster sizes from each method.
The horizontal axis is the cluster size and the vertical axis is proportional to the number of clusters of that size.

that larger graphs can have more clusters. (Section 5.6 dis-
cusses varying k.) For the networks where we have ground-
truth communities, we slightly overestimate the number of
clusters k since there usually exists a large number of
ground-truth communities. Since we remove duplicate clus-
ters after the PageRank expansion in Nisg, the returned num-
ber of clusters can be smaller than k. Also, since we choose
all the tied seeds in “graclus centers” and “spread hubs”, the
returned number of clusters of these algorithms can be
slightly larger than k. Recall that we use a top-down hierar-
chical clustering scheme in the “graclus centers” strategy. So,
in this case, the returned number of clusters before filtering
the duplicate clusters is slightly greater than or equal to
2/sk1. Demon and Oslom determine the number of clusters
based on datasets themselves, although these methods fail
on Flickr, Myspace, LiveJournal, LiveJournal2, and Orkut.
Bigclam does not finish on the Myspace network (using 4
threads) after running for one week.

Fig. 4 shows distributions of cluster sizes. These figures
show that the NisE method tends to find larger clusters than
the other methods, usually about 10 to 100 times as large.
Also, the NisE method often finds a number of large clus-
ters—these are the spikes on the right for subfigures (f)-(j).
This tends to happen slightly more often for the “graclus
centers” seeding strategy. The other observation is that NisE
tends to produce more variance in the sizes of the clusters
than the other methods and the resulting histograms are not
as sharply peaked.

5.2 Importance of Neighborhood-Inflation

We evaluate the quality of overlapping communities in
terms of the maximum conductance of any cluster. A high
quality algorithm should return a set of clusters that covers a
large portion of the graph with small maximum conduc-
tance. This metric can be captured by a conductance-versus-
coverage curve. That is, for each method, we first sort the
clusters according to the conductance scores in ascending
order, and then greedily take clusters until a certain

percentage of the graph is covered. The z-axis of each plot is
the graph coverage, and the y-axis is the maximum conduc-
tance value among the clusters we take. We can interpret this
plot as follows: we need to use clusters whose conductance
scores are less than or equal to y to cover x percentage of the
graph. Note that lower conductance indicates better quality
of clusters, i.e., alower curve indicates better clusters.

First, we verify the importance of neighborhood inflation in
our seed expansion phase. Recall that when we compute
the personalized PageRank score for each seed node, we
use the seed node’s entire vertex neighborhood (the vertex
neighborhood is also referred to as “ego network”) as the
restart region in PPR (details are in Section 3.3). To see how
this affects the overall performance of the seed expansion
method, we compare the performance of singleton seeds
and neighborhood-inflated seeds. Fig. 5 shows the conduc-
tance-versus-coverage plot for singleton seeds and neigh-
borhood-inflated seeds. “*-single” indicates singleton seeds,
i.e., each seed is solely used as the restart region in PPR.
“*-ego” indicates neighborhood-inflated seeds. We also use
four different seeding strategies: “graclus centers” (denoted
by “grc-*”), “spread hubs” (denoted by “sph-*”), “locally
minimal neighborhoods” (denoted by “lem-*”), and
“random” (denoted by “rnd-*”).

We can see that the performance significantly degrades
when singleton seeds are used for all the seeding strategies.
This implies that neighborhood inflation plays a critical role
in the success of our method. Even though we only present
the results on LiveJournal, Myspace, and Flickr in Fig. 5 for
brevity, we consistently observed that neighborhood-inflated
seeds are much better than singleton seeds on all other
networks. We also notice that when neighborhood-inflated
seeds are used, both “graclus centers” and “spread hubs”
seeding strategies significantly outperform other seeding
strategies. “spread hubs” and “graclus centers” seeding strat-
egies produce similar results on LiveJournal whereas
“graclus centers” is better than “spread hubs” on Myspace
and Flickr. We use the conventional Fiedler PPR for the
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Fig. 5. Importance of neighborhood inflation — there is a large performance gap between singleton seeds and neighborhood-inflated seeds for all the
seeding strategies. Neighborhood inflation plays a critical role in the success of nise. When neighborhood-inflated seeds are used, “graclus centers”
and “spread hubs” seeding strategies significantly outperform other seeding strategies.

expansion phase in Fig. 5, but we also got the same conclu-
sion using the standard PPR.

5.3 Community Quality Using Conductance,
Modularity, and Association

We compare the performance of Nise with other state-of-the-
art methods. Within Nisg, we also compare four different
seeding strategies and two different expansion methods. To
evaluate the quality of communities, we use three metrics:
conductance, modularity [33], and average association [34].!
Lower conductance, higher modularity, and higher average
association indicate better communities. Similar to how we
draw the maximum conductance-versus-coverage plot, we
draw minimum modularity-versus-coverage and minimum
average association-versus-coverage plots. Then, we com-
pute AUC (Area Under the Curve) of the metric-versus-cov-
erage. For the conductance measure, the AUC scores are
normalized such that they are between zero and one, and
then, we report 1-AUC as the AUC score of the conductance
metric in order to keep the property that higher AUC is better.
Thus, in Table 6, higher AUC scores indicate better commu-
nities for all the three metrics.

Table 6 shows AUC scores on the six networks where we
do not have ground-truth community information (see
Table 1 for details about these networks). We can see several
patterns in Table 6. First, Nist outperforms Demon, Oslom,
and Bigclam. There is a significant performance gap
between Nis and these methods. Second, within Nisg,
“graclus centers” and “spread hubs” seeding strategies out-
perform the other two seeding strategies. As a result, “nise-
gre-fppr” or “nise-grc-ppr” show the best performance for
all networks. Third, “fppr” leads to better conductance val-
ues than “ppr” whereas “ppr” leads to better average asso-
ciation values than “fppr”.

We also compare NiSE with a non-overlapping clustering
to study the benefit of overlap. If we use the clusters pro-
duced by Graclus [4], a graph partitioning method which is
used within our “graclus centers” seeding strategy, we
observe that NisE also significantly outperforms Graclus in
terms of all the three metrics on all the networks. For exam-
ple, in terms of conductance measure, the AUC of Graclus

1. The modularity of an individual cluster C; is defined as
(1/1inks(V, V))(1inks(C;,C;) — 1inks(C;, V)?/1inks(V,V)), and the
average association of C; is defined as 1inks(C;,C;)/|C;.

is 0.4691 while the AUC of NisE is 0.8981. Due to the large
performance gap between these clusterings, we omit more
comprehensive numerical evaluation.

5.4 Community Quality via Ground-truth

We have ground-truth communities for the DBLP, Amazon,
LiveJournal2, and Orkut networks, thus, for these networks,
we compare against the ground-truth communities. Given a
set of algorithmic communities C and the ground-truth com-
munities S, we compute the /| measure and the F, measure
to evaluate the relevance between the algorithmic commu-
nities and the ground-truth communities. In general, Fj
measure is defined as follows:

precision(S;) - recall(S;)

N 2
Fy(S)) = (1+ B B - precision(S;) + recall(S;)

where g is a non-negative real value, and the precision and
recall of S; € S are defined as follows:

precision(S;) = M’
Cil
|CJ’ NSl
recall(S;) = —2-—-
) |Sil

where C; € C, and Fg(S;) = Fp(Si,Cj+) where j* = argmax;
Fg(S;,C;). Then, the average F measure is defined to be

- 1
Fp = 5 > Fp(S)).
S;eS
Given an algorithmic community, precision indicates

how many vertices are actually in the same ground-truth
community. Given a ground-truth community, recall indi-
cates how many vertices are predicted to be in the same
community in a retrieved community. By definition, the
precision and the recall are evenly weighted in F; measure.
On the other hand, the F, measure puts more emphasis on
recall than precision. The authors in [29] who provided the
datasets argue that it is important to quantify the recall since
the ground-truth communities in these datasets are partially
annotated, i.e., some vertices are not annotated to be a part
of the ground-truth community even though they actually
belong to that community. This indicates that it would be
reasonable to weight recall higher than precision, which is
done by the F;, measure.
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TABLE 6
AUC of Metric-versus-Coverage — We Use Three Metrics: Conductance, Modularity, And Average Association
Graph Metric oslom demon bigclam nise-lem-fppr nise-rnd-fppr nise-grc-fppr nise-sph-fppr nise-grc-ppr nise-sph-ppr
HepPh conductance 0.5349 0.4970  0.3752 0.5655 0.7767 0.8981 0.8952 0.8403 0.8266
modularity  0.0066 0.0391  0.0085 0.0198 0.1404 0.1886 0.1751 0.1647 0.1615
association  15.030 24.623  16.585 6.279 35.019 39.043 36.622 50.806 45.734
AstroPh conductance 0.4202 0.4304 0.3545 0.4590 0.7758 0.8466 0.8323 0.8111 0.8063
modularity  0.0010 0.0224  0.0051 0.0298 0.1336 0.1638 0.1576 0.1537 0.1491
association ~ 11.641 18336  15.202 10.602 22.928 26.147 25.454 32.669 29.392
CondMat conductance 0.5715 0.4299  0.5125 0.8494 0.8295 0.8945 0.8882 0.8487 0.8426
modularity ~ 0.0007 0.0012  0.0059 0.1580 0.1704 0.1964 0.1925 0.1770 0.1738
association ~ 5.575  5.993 6.341 9.079 9.135 10.579 10.527 11.549 11.222
Flickr conductance  N/A  N/A  0.1201 0.3736 0.6597 0.8922 0.6794 0.8828 0.7365
modularity N/A N/A  0.00001 0.0075 0.1147 0.1945 0.1204 0.1882 0.1335
association ~ N/A N/A 2152 8.488 23.013 76.807 26.792 79.901 27.483
LiveJournal conductance N/A N/A 0.0465 0.3447 0.3682 0.8223 0.8150 0.8176 0.8093
modularity N/A  N/A  0.00004 0.0006 0.0014 0.1334 0.1318 0.1336 0.1329
association ~N/A N/A 7.202 13.160 20.068 52.835 45.702 54.822 47.958
Myspace conductance N/A N/A  N/A 0.2168 0.3795 0.8052 0.7301 0.8008 0.7144
modularity N/A N/A N/A 0.00007 0.0322 0.1278 0.1013 0.1317 0.1091
association N/A N/A N/A 4.478 21.888 53.125 35.347 62.141 31.908

Higher AUC indicates better communities. NISE outperforms Oslom, Demon, and Bigclam. Within NI, “graclus centers” and “spread hubs” seeding strategies

are better than other seeding strategies.

TABLE 7
F1 and F2 Measures
DBLP Amazon LiveJournal2 Orkut
F P F F F F F F
bigclam 15.1% 13.0% 27.1% 25.6% 11.3% 13.7% 43.0% 47.4%
demon 13.7% 12.0% 16.5% 15.3% N/A N/A N/A N/A
oslom 13.4% 11.6% 32.0% 30.2% N/A N/A N/A N/A
nise-lem-fppr 13.9% 15.4% 46.3% 56.5% 11.3% 13.8% 40.9% 46.8%
nise-rnd-fppr 17.7% 20.5% 48.9% 58.8% 12.1% 16.5% 54.6% 62.9%
nise-sph-fppr 18.1% 21.4% 49.2% 59.5% 12.7% 18.1% 55.1% 64.2%
nise-sph-ppr 19.0% 22.6% 49.7% 58.7% 12.8% 18.1% 57.4% 65.2%
nise-gre-fppr 17.6% 21.7% 46.7% 57.1% 12.2% 17.6% 51.1% 61.4%
nise-grc-ppr 17.6% 22.0% 47.3% 56.0% 12.8% 17.6% 53.5% 62.4%

NISE with “spread hubs” seeding strategy achieves the highest F1 and F2 scores.

TABLE 8
Running Times of Different Methods on Our Test Networks

bigclam nise-sph-fppr nise-gre-fppr

Graph oslom demon
HepPh 19 mins. 16 secs. 27 secs.
AstroPh 38 mins. 3 secs. 42 secs.
CondMat 20 mins. 39 secs. 50 secs.
DBLP 5 hrs. 50 mins. 3 hrs. 53 mins.
Amazon 2 hrs. 55 mins. 1 hr. 55 mins.
Flickr N/A N/A

Orkut N/A N/A
LiveJournal N/A N/A
LiveJournal2 N/A N/A
Myspace N/A N/A

11 mins. 23 secs. 22 secs. 2 mins. 48 secs.
48 mins. 1 secs. 36 secs. 2 mins. 26 secs.
7 mins. 21 secs. 36 secs. 1 min. 14 secs.

7 hrs. 13 mins.
1 hr. 25 mins.
69 hrs. 59 mins.
13 hrs. 48 mins.
65 hrs. 30 mins.
21 hrs. 35 mins.
>7 days

18 mins. 20 secs.
37 mins. 36 secs.
43 mins. 55 secs.

1 hrs. 16 mins.
2 hrs. 36 mins.
2 hrs. 15 mins.
5 hrs. 27 mins.

29 mins. 44 secs.
42 mins. 43 secs.
3 hrs. 56 mins.
4 hrs. 16 mins.
4 hrs. 48 mins.
6 hrs. 37 mins.
9 hrs. 42 mins.

In Table 7, we report the average F; and F» measures on
DBLP, Amazon, LiveJournal2, and Orkut networks. A higher
value indicates better communities. We see that NisE outper-
forms Bigclam, Demon, and Oslom in terms of both F; and
F, measures on these networks. Within Nisg, “spread hubs”
seeding is better than “graclus centers” seeding, and the
standard PPR is slightly better than the Fiedler PPR in most
of the cases. So, we see that the standard PPR is useful for

identifying ground-truth communities. This result is also
consistent with the recent observations in [22].

5.5 Comparison of Running Times

We compare the running times of the different algorithms
in Table 8. To do a fair comparison, we run the single
thread versions of Bigclam and Nise on the HepPh,
AstroPh, CondMat, DBLP, and Amazon networks. On
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TABLE 9
Running Times (Minutes) of Different Methods
on Flickr Networks Of Different Sizes

nodes edges bigclam nise-sph-fppr nise-grc-fppr
475,621 3,693,728 506 13 65
1,396,462 11,722,538 1,260 24 100
1,994,422 21,445,057 >4,000 30 97
TABLE 10
I} Measures with Different Numbers of Communities
DBLP Amazon
k=20,000 k£=30,000 k=20,000 k=230,000
bigclam 16.6% 14.0% 31.9% 22.9%
demon 13.7% 13.7% 16.5% 16.5%
oslom 13.4% 13.4% 32.0% 32.0%
nise-sph-fppr 17.5% 18.8% 47.6% 49.2%
nise-gre-fppr 17.2% 17.6% 45.6% 46.7%
TABLE 11

AUC of Conductance-versus-Coverage
with Different Numbers of Communities

CondMat LiveJournal
k=150 k=250 k=10,000 k=20,000
oslom 0.5715 0.5715 N/A N/A
demon 0.4299 0.4299 N/A N/A
bigclam 0.5238 0.5112 0.0472 0.0465
nise-gre-fppr 0.8910 0.8945 0.8161 0.822
nise-sph-fppr ~ 0.8882 0.8884 0.8110 0.8166

Higher AUC indicates better communities.

larger networks Demon and Oslom fail to complete. So, we
switch to the multi-threaded version of Bigclam and Nisg
with four threads for Flickr, Orkut, LiveJournal, LiveJour-
nal2, and MySpace. We see that Nist is the only method
which can process the largest dataset (Myspace) in a rea-
sonable time. On small networks (HepPh, AstroPh, and
CondMat), “nise-sph-fppr” is faster than Demon, Oslom
and Bigclam. On medium size networks (DBLP and Ama-
zon), both “nise-grc-fppr” and “nise-sph-fppr” are faster
than other methods. On large networks (Flickr, Orkut,
LiveJournal, LiveJournal2, Myspace), Nist is much faster
than Bigclam.

Table 9 shows the running times (in minutes) on Flickr
networks [11] of three different sizes. Demon and Oslom
fail on these three networks. We set £ = 10,000 for Big-
clam and Nise. We observe that when the input size
increases by a factor of 3, the runtime of NISE increases by
a factor of 1.5 or 1.8 depending on the seeding strategies
(comparison of the first row and the second row of
Table 9). By comparing the second row and the third row,
we infer that if the differences in sizes of two graphs are
not larger than a factor of 2, the inherent structure of the
network has more impact on the run time of Nist than the
input size itself. This occurs because the most time-con-
suming step in our computation is the seed expansion
phase. The run time of this depends more strongly on the
output clusters than the input network size. Finally, we
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observe that NisE is much faster than Bigclam on all of
these networks.

5.6 Varying the Number of Communities

We need to specify the number of communities for NisE and
Bigclam whereas Demon and Oslom automatically identify
the number of communities. Thus, we also conduct experi-
ments using different numbers of communities to ensure
that our results are not an extremal case. Table 10 shows the
F scores of each method with different values of k, the
number of communities. The outputs of Demon and Oslom
are not affected by different k, but we include these results
for reference. Also, Table 11 shows the AUC of conduc-
tance-versus-coverage with different k. We see that NisE con-
sistently outperforms other methods with a reasonable
range of k in terms of both F1 measures and AUC scores
even with untuned values of the number of communities.

6 DiscussiON AND CONCLUSION

We now discuss the results from our experimental investiga-
tions. First, we note that NisE is the only method that worked
on all of the problems. Also, our method is faster than other
state-of-the-art overlapping community detection methods.
Perhaps surprisingly, the major difference in cost between
using “graclus centers” for the seeds and the other seed
choices does not result from the expense of running Graclus.
Rather, it arises because the personalized PageRank expan-
sion technique takes longer for the seeds chosen by Graclus.
When the PageRank expansion method has a larger input
set, it tends to take longer, and the “graclus centers” seeding
strategy is likely to produce larger input sets because of the
neighborhood inflation and because the central vertices of
clusters are likely to be high degree vertices.

We wish to address the relationship between our results
and some prior observations on overlapping communities.
The authors of Bigclam found that the dense regions of a
graph reflect areas of overlap between overlapping commu-
nities. By using a conductance measure, we ought to find
only these dense regions — however, our method produces
much larger communities that cover the entire graph. The
reason for this difference is that we use the entire vertex
neighborhood as the restart for the personalized PageRank
expansion routine. We avoid seeding exclusively inside a
dense region by using an entire vertex neighborhood as a
seed, which grows the set beyond the dense region. Thus, the
communities we find likely capture a combination of commu-
nities given by the ego network of the original seed node.

Overall, Nis significantly outperforms other state-of-the-
art overlapping community detection methods in terms of
run time, cohesiveness of communities, and ground-truth
accuracy. Also, our new seeding strategies, “graclus cen-
ters” and “spread hubs”, are superior than existing meth-
ods, thus play an important role in the success of our seed
set expansion method.
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